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ABSTRACT: 
Early detection of Alzheimer's disease (AD) is based on the categorization of characteristics retrieved 

from brain scans, which plays a significant role in preventing and treating the illness. The characteristics 

must properly reflect key AD-related variations in physical brain structures such ventricles size, 

hippocampus shape, cortical thickness, and brain volume. This research suggests using a deep 3D 

convolutional neural network (3D-CNN) to predict Alzheimer's disease using generic features that 

capture AD biomarkers and can adapt to different domain datasets. The 3D-CNN is based on a pre-

trained 3D convolutional autoencoder for capturing anatomical shape changes in structural brain MRI 

data. For each task-specific AD classification, the fully linked higher layers of the 3D-CNN are fine-tuned. 

ADNI MRI experiments 

INTRODUCTION: 
Alzheimer's disease (AD), a degenerative brain ailment and the most prevalent form of dementia in older 

people, involves nerve cell death and tissue loss throughout the brain, resulting in a substantial reduction in 

brain volume over time and impacting most of its functions [1]. By 2050, one out of every 85 individuals will 

have Alzheimer's disease [2]. Because the expense of caring for Alzheimer's patients is predicted to skyrocket, 

having a computer-aided approach for early and accurate AD detection becomes increasingly important [3]. The 

goal of this study is to create an extensible deep learning-based system for early Alzheimer's disease diagnosis. 

Deep learning assists in problem solving. 

PRIOR WORK: 
The sMRI parameters of voxel-wise, cortical thickness, and hippocampus shape volume are employed to 

diagnose AD [3]. After co-aligning (registering) all the brain imaging data, voxel-wise features are retrieved to 

connect each brain voxel with a vector (signature) of several scalar measures. Kloppel et al. [15] employed grey 

matter (GM) voxels as characteristics and trained an SVM to distinguish between AD and NC patients. In [16], 

the brain volume is divided into GM, white matter (WM), and CSF sections, with voxel-wise densities 

calculated and each voxel associated with a vector of GM, WM, and CSF densities for classification. Lerch et al. 

[17] segmented the recorded brain MRI into the GM, WM, and M. 

MODEL: 
A source-domain-trained 3D-CAE extracts features from a brain MRI, and a highly supervised target-domain-

adaptable 3D-CNN conducts task-specific classification. Sections 3.1 and 3.3 describe the 3D-CAE architecture 

and the AD diagnostic framework employing the DSA-3D-CNN, respectively. 

Convolutional Autoencoder (3D-CAE): 
The traditional unsupervised autoencoder combines data encoding and decoding to extract a few co aligned 

scalar feature maps from a group of input 3D pictures containing scalar or vectorial voxel-wise signals. The 

input picture is encoded in the hidden layer by mapping each fixed voxel neighbourhood to a vectorial feature 

space and then reconstructed to the original image space in the output layer. To decrease the reconstruction 

error, back-propagation and limitations on feature space attributes are used in autoencoder training to extract 

features that represent typical patterns of input data fluctuations. Using vectorial voxel-wise signals to extract 

global features from 3D pictures is computationally intensive and necessitates a large training data set. This is 

attributed to the rapidly increasing number of parameters to be considered. 
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The latter function is chosen from a wide range of restricting differentiable functions, including the sigmoid and 

others. 

and a linear rectified unit (ReLU), 

Because the J-vectorial is present in the 3D picture x in Eq. (1) 

Weights Wk form a 3D moving-window filter for each voxel inside voxel-wise signals, which convolve the 

union of J dimensional signal spaces. To make things easier, we'll use 

 

indicate the whole encoding of the input 3D picture with J vectorial voxel-wise signals with the k-th 3D feature 

map, hk, so that its scalar components are produced with Eq. (1) for a given voxel neighbourhood using the 

weights Wk and bias vectors bk. The equivalent inverse transformation, Tinv(...), decodes or reconstructs the 

initial 3D image: 
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Fig. 1: CAD Dementia brains MRI at three layers of the stacked 3D-CAE: cortex thickness and volume I brain 

size (j), ventricle size (k), and hippocampal size (l) (l). To minimise their size and identify higher-level features, 

the feature maps are down-sampled at each layer using max-pooling. 

 

The decoding and encoding weights Pk and Wk were connected by flipping over all their dimensions, as 

proposed in [32]. Using the stochastic gradient descent search and error back-propagation, the cost function Eq. 

(3) was minimised in the parameter space. The feature maps, h(i), are down-sampled using max-pooling, i.e. 

extracting the maximum value of non-overlapping sub-regions, to provide translational invariance. The max-

pooling result is utilised to train the upper layer CAE for entangling form changes in lower-level feature maps of 

decreasing size, as seen in Fig. 1. (a). At each level of its hierarchy, stacking the encoding 3D-CAE layers 

(abbreviated 3D-CAES below) reduces the size of the feature map by half [32]. 

Transfer Learning and Domain Adaptation: 
A large training set of labelled data is generally required for supervised learning of a classifier to get decent 

results. If this collection is in theory too small, transfer learning can be used to include extra information gained 

during the construction of a comparable classifier. Initial weights learnt for performing comparable tasks [36–

39] might be used in the goal classifier based on a deep CNN. We concentrate on domain adaptation [40–42], 

also known as source-to-target adaptation, which occurs when a classifier is adapted to target data after being 

trained on source data. Unlike traditional guided learning, which involves training a classifier from start and 

minimising a total quantitative loss from mistakes on the training data, domain adaptation involves minimising 

the same loss throughout the target domain. 
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Deeply Supervised Adaptive 3D-CNN (DSA-3DCNN: 
While the bottom layers of a goal predictive 3D-CNN extract generic characteristics, the top levels must make 

task specific categorization easier utilising those features [6]. The proposed classifier collects generic 

characteristics using a stack of locally connected lower convolutional layers while fine-tuning parameters of the 

fully connected top layers for task-specific purposes. Pre-training, initial training of the lower convolutional 

layers, and task-specific fine-tuning comprise the proposed hierarchical 3D CNN's training. The convolutional 

layers for generic feature extraction are created as a stack of 3D-CAEs that have been pre-trained in the source 

domain during the pre-training step. Then these layers are initialised by encoding the 3D-CAE weights [5], 

followed by fine-tuning of the higher fully loaded layers using deep supervision [14]. 

 

 

pictures from the network's bottom pre-trained layer The ReLU activation functions at each inner layer and the 

fully linked higher layers with a softmax top-most output layer (Fig. 2) are used in our implementation of the 

3D-CNN to predict whether an input brain sMRI belongs to the AD, MCI, or NC groups. Deep supervision of 

this 3D-higher CNN's layers increased its task-specific performance [14,45]. It optimises a weighted sum of the 

like log-likelihood-based sepa rate losses, dependent on the weights for each individual fully connected upper 

layer, plus the like loss of the top-most layer conducting the softmax transformation of its convolved and 

biassed inputs, enabling task-specific fine-tuning. A classifier's discriminative skills are 

 EXPERIMENTS: 
The proposed DSA-3D-CNN for AD diagnosis was validated on 30 CADDementia subjects as the source 

domain and 210 ADNI subjects as the target domain (demographic information in Table 1) for five 

classification tasks: four binary ones (AD vs. NC, AD+MCI vs. NC, AD vs. MCI, MCI vs NC), and the ternary 

classification (AD vs. MCI vs. NC). Each test's classification accuracy was assessed using ten-fold cross-

validation. The deep CNN deployed for our research on Amazon EC2 g2.8xlarge instances with GPU GRID 

K520 was built using the Theano library [47]. 

Table 1: ADNI database (STD = standard deviation), demographic data for 210 participants from the target 

domain. 

 

Generic and task-specific feature evaluation: 
Special 2D projections of the retrieved features in Fig. 1(b) demonstrate the proposed DSA-3D-generalization 

CNN's and adaption capability (Fig. 2). In Fig. 1(b), selected slices of the three feature maps from each layer of 
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our stacked 3D-CAE (abbreviated 3D-CAES below) reveal that the learned generic convolutional filters can 

capture variables related to AD biomarkers, such as ventricle size, cortical thickness, and hippocampus model. 

The pre-trained 3D-CAES created these feature maps for the CADementia database. The first layer of the 3D-

CAES extracts the cortical thickness as a discriminative AD characteristic based on these projections. 

 

Table 2: Performance of the proposed classifier on the target domain (ADNI) for a certain cross-validation fold 

(see Section 4.2 and Eq (4). 

 

The ensuing layers reflect the brain size (related to the patient gender), ventricle size, and hippocampus model 

of AD. Each 3D-CAES layer combines the retrieved lower-layer feature maps to train the upper level to 

describe the anatomical changes in the brain sMRI in more detail. At the next levels, both the ventricle size and 

the cortical thickness characteristics are merged to get conceptually higher level features. Projection capabilities 

of the recovered higher-layer features to differentiate the AD, MCI, and NC brain sMRIs in the low-dimensional 

feature space are shown in Fig. 3. Projected manifold distributions of the training ADNI sMRI over the hidden 

layers of our DSA 3D-CNN are shown in Fig. 3. 

Classification performance evaluation: 
Eight assessment criteria were used to evaluate and compare the proposed DSA-3D-CNN classifier's 

performance for each of the tasks described in Section 4.1. For a given set of data items, let TP, TN, FP, and FN 

indicate the number of true positive, true negative, false positive, and false negative classification findings. The 

following measures [49] are used to evaluate performance: accuracy (ACC); sensitivity (SEN), or recall; 

specificity (SPE); balanced accuracy (BAC); positive predictive value (PPV), or precision; negative predictive 

value (NPV), and F1-score. 
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Furthermore, the area under the ROC curve is used to evaluate the classifier's performance after constructing a 

receiver operating characteristic (ROC) (AUC). Table 2 shows the performance of our DSA 3D-CNN classifier 

for five different classification tasks and a specific cross-validation fold. The ROCs / AUCs of these tests in Fig. 

5 and the means and standard deviations of all the met rics of Eq. (4) in Table 3 suggest that the proposed task-

specific DSA-3D-NCC classifier's AD predictions are robust and consistent. Table 4 compares its accuracy 

(ACC) to that of seven other well-known techniques that employ the same or even more inputs (imaging 

modalities). 

Our classifier's ten-fold cross-validation average results are shown in Table 4. When compared to existing 

techniques in all five task-specific scenarios, the suggested DSA-3D-CNN beats them. Despite the fact that just 

one imaging modality (sMRI) was used and no previous skull-stripping was performed, this result was obtained. 

CONCLUSION: 
This study presented a DSA-3D-CNN classifier that outperforms multiple existing state-of-the-art predictors in 

predicting AD on structural brain MRI data. With three layered 3D CAE networks pre-trained on the 

CADDementia dataset, the transfer learning approach is employed to improve generality of the features 

collecting AD biomarkers. The characteristics are then retrieved and employed in the bottom layers of a 3D 

CNN network to identify AD biomarkers. The lowest layer is then piled with three completely linkelayers on 

top of it. 
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ers to do AD classification on 210 ADNI dataset participants. To increase topic discrimination, a discriminative 

loss function was used to each fully connected layer in addition to the output classification layers to improve 

classification performance. The findings show that hierarchical feature extraction improved in 3D-CNN hidden 

layers, distinguishing between AD, MCI, and NC individuals. We looked at seven different 

categorizationmeasures. 

 

Fig. 5: ROCs and AUC performance scores for the DSA-3D-CNN classifier were compared to state-of-the-art 

models after fine-tuning to the specific task of distinguishing between (left-to-right) AD / MCI / NC; AD+MCI / 

NC; AD / NC; AD / MCI, and MCI / NC subjects on target domain (ADNI) using ten-fold crossvalidation. The 

findings show that the proposed DSA-3D-CNN outperforms others. 
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